Vol. 2 No. 02 (2018)
Review Article

Diagnosis of tuberculosis: Newer Techniques

Masum Ahmed
Assistant Professor, Respiratory Medicine, Sher-e-Bangla Medical College, Barishal, Bangladesh
AJME Kayesh
Assistant Professor, Medicine, Sher-e-Bangla Medical College, Barishal, Bangladesh
A Sarker
Assistant Professor, Neuro Medicine, Sher-e-Bangla Medical College, Barishal, Bangladesh
MZ Hussain
Assistant Professor, Medicine, Sher-e-Bangla Medical College, Barishal, Bangladesh
SMA Alam
Assistant Registrar, Sher-e-Bangla Medical College Hospital, Barishal, Bangladesh
MD Muniruzzaman
Indoor Medical Officer, Sher-e-Bangla Medical College Hospital, Barishal, Bangladesh

Published 21-09-2021

How to Cite

1.
Diagnosis of tuberculosis: Newer Techniques. Planet (Barisal) [Internet]. 2021 Sep. 21 [cited 2024 Nov. 23];2(02):22. Available from: https://bdjournals.org/index.php/planet/article/view/54

Abstract

Tuberculosis (TB) is still one of the deadly infectious diseases worldwide. It is estimated that around one-third of the world’s population is infected with latent TB (LTBI) with 5–10% life time risk of developing active TB [1, 2]. Presence of good diagnosis is important for the control and ultimate elimination of the disease [3]. However, diagnosis of LTBI and active TB using the existing tools is challenged by low sensitivity (in smear microscopy); need of prolonged time for results and need of sophisticated laboratories and expertise (in TB culture) [4]; relatively expensive and heterogeneous diagnostic accuracy (in molecular techniques) [5]; false positive reactions [6], lower sensitivity in immune-suppressed peoples [6, 7], anamnestic recall of immunity [8], potential for inter- and intra- operator variability of results [9], inconvenience for patients in tuberculin skin test, a test, based on the fact that infection with M. tuberculosis bacterium produces a delayed-type hypersensitivity skin reaction to certain components of the bacterium [10]. Putting all the challenges of the techniques together reinforces the need for improved diagnostic tools Recently, important advances have been achieved in these fields that have led to substantial improvements in the accuracy and the timing of the diagnosis of tuberculosis. Novel methods allow for a better identification of latently infected individuals who are at risk of developing active tuberculosis, they also offer the possibility for a rapid diagnosis of active tuberculosis in patients with negative sputum smears for acid-fast bacilli and enable prompt identification of drug-resistant strains of Mycobacterium tuberculosis directly from respiratory specimen with a high accuracy. In addition, promising methods that will further optimize the diagnosis of tuberculosis are under development. In the future, therapeutic interventions based on the results of novel diagnostic procedures can be made earlier leading to improvements in patient care.

References

  1. WHO. Global Tuberculosis Control 2009. Epidemiology, Strategy, Financing, Geneva, 2009.
  2. Pai M, O'Brien R. New diagnostics for latent and active tuberculosis: state of the art and future prospects. Semin. Respir. Crit. Care Med. 2008; 29: 560–68.
  3. Newton SM, Brent AJ, Anderson S al. et Paediatric tuberculosis. Lancet Infect. Dis. 2008; 8: 498– 510.
  4. Lopez AD, Mathers CD. Measuring the global burden of disease and epidemiological transitions: 2002-2030. Ann. Trop. Med. Parasitol. 2006; 100: 481– 99.
  5. Stevenson CR, Forouhi NG, Roglic G al. et Diabetes and tuberculosis: the impact of the diabetes epidemic on tuberculosis incidence. BMC Public Health 2007; 7: 234.
  6. Tubach F, Salmon D, Ravaud P al. et Risk of tuberculosis is higher with antitumor necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor receptor therapy: the three-year prospective french research axed on tolerance of biotherapies registry. Arthritis Rheum. 2009; 60: 1884– 94.
  7. WHO/IUATLD. Global Project on Antituberculosis Drug Resistance Surveillance. Anti-Tuberculosis Drug Resistance in the World, Geneva, 2008.
  8. Sotgiu G, Ferrara G, Matteelli A al. et Epidemiology and clinical management of XDR-TB: a systematic review by TBNET. Eur. Respir. J. 2009; 33: 871– 81.
  9. Gie RP, Matiru RH. Supplying qualityassured child-friendly anti-tuberculosis drugs to children [Editorial]. Int. J. Tuberc. Lung Dis. 2009; 13: 277– 8.10 CDC. Reported Tuberculosis in the United States, 2007. U.S. Department of Health and Human Services, Atlanta, GA, 2008.
  10. EuroTB. Report on tuberculosis cases notified in 2005. [Accessed 20 Dec 2009.] Available from URL:
  11. Bloom BR, Salomon JA. Enlightened selfinterest and the control of tuberculosis [Editorial]. N. Engl. J. Med. 2005; 353: 1057– 9.
  12. Villegas MV, Labrada LA, Saravia NG. Evaluation of polymerase chain reaction, adenosine deaminase, and interferongamma in pleural fluid for the differential diagnosis of pleural tuberculosis. Chest 2000; 118: 1355– 64.
  13. Nagesh BS, Sehgal S, Jindal SK al. et Evaluation of polymerase chain reaction for detection of Mycobacterium tuberculosis in pleural fluid. Chest 2001; 119: 1737– 41.
  14. Lima DM, Colares JK, Da Fonseca BA. Combined use of the polymerase chain reaction and detection of adenosine deaminase activity on pleural fluid improves the rate of diagnosis of pleural tuberculosis. Chest 2003; 124: 909– 14.
  15. Kim SY, Park YJ, Kang SJ al. et Comparison of the BDProbeTec ET system with the roche COBAS AMPLICOR system for detection of Mycobacterium tuberculosis complex in the respiratory and pleural fluid specimens. Diagn. Microbiol. Infect. Dis. 2004; 49: 13– 18.
  16. Zemlin AE, Burgess LJ, Carstens ME. The diagnostic utility of adenosine deaminase isoenzymes in tuberculous pleural effusions. Int. J. Tuberc. Lung Dis. 2009; 13: 214– 20.
  17. Baba K, Hoosen AA, Langeland N al. et Adenosine deaminase activity is a sensitive marker for the diagnosis of tuberculous pleuritis in patients with very low CD4 counts. PLoS ONE 2008; 3: e2788.
  18. Liang QL, Shi HZ, Wang K al. et Diagnostic accuracy of adenosine deaminase in tuberculous pleurisy: a meta-analysis. Respir. Med. 2008; 102: 744– 54.
  19. Greco S, Girardi E, Masciangelo R al. et Adenosine deaminase and interferon gamma measurements for the diagnosis of tuberculous pleurisy: a meta-analysis. Int. J. Tuberc. Lung Dis. 2003; 7: 777– 86.
  20. Jiang J, Shi HZ, Liang QL al. et Diagnostic value of interferon-gamma in tuberculous pleurisy: a metaanalysis. Chest 2007; 131: 1133–41.
  21. Losi M, Bossink A, Codecasa L al. et Use of a T-cell interferon-{gamma} release assay for the diagnosis of tuberculous pleurisy. Eur. Respir. J. 2007; 30: 1173–9.
  22. Lange C, Hellmich B, Ernst M al. et Rapid immunodiagnosis of tuberculosis in a woman receiving anti-TNF therapy. Nat. Clin. Pract. Rheumatol. 2007; 3: 528– 34.
  23. Kobashi Y, Shimizu H, Mouri K al. et Rapid diagnosis of tuberculous pleuritis by a T-cell interferon-gamma release assay. Scand. J. Infect. Dis. 2009; 41: 232–6.
  24. Lee LN, Chou CH, Wang JY al. et Enzyme-linked immunospot assay for interferon-gamma in the diagnosis of tuberculous pleurisy. Clin. Microbiol. Infect. 2009; 15: 173– 9.
  25. Hooper CE, Lee YC, Maskell NA. Interferon-gamma release assays for the diagnosis of TB pleural effusions: hype or real hope? Curr. Opin. Pulm. Med. 2009; 15: 358– 65.
  26. Hasaneen NA, Zaki ME, Shalaby HM al. et Polymerase chain reaction of pleural biopsy is a rapid and sensitive method for the diagnosis of tuberculous pleural effusion. Chest 2003; 124: 2105– 11.
  27. Gopi A, Madhavan SM, Sharma SK al. et Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest 2007; 131: 880– 89.
  28. Schaaf B, Zumla A. Tuberculosis. Elsevier, Europe, 2009.
  29. Peel MM, Palmer GG, Stacpoole AM al. et Human lymphadenitis due to
  30. Corynebacterium pseudotuberculosis: report of ten cases from Australia and review. Clin. Infect. Dis. 1997; 24: 185–91.
  31. Jain AK, Dhammi IK. Tuberculosis of the spine: a review. Clin. Orthop. Relat. Res. 2007; 460: 39– 49.
  32. Dunn R, Zondagh I. Spinal tuberculosis: diagnostic biopsy is mandatory. S. Afr. Med. J. 2008; 98: 360– 62.
  33. Abou-Raya S, Abou-Raya A. Spinal tuberculosis: overlooked? J. Intern. Med. 2006; 260: 160– 63.
  34. Lange CG, Getty PJ, Morrissey AB al. et Destructive osteoarthritis after delayed diagnosis of tuberculosis. Infection 2002; 30: 46– 9.
  35. Akman M, Sirvanci M, Talu U al. et Magnetic resonace imaging of tuberculous spondylitis. Orthopedics 2003; 26: 69– 73.
  36. Jung NY, Jee WH, Ha KY al. et Discrimation of tuberculous spondylitis from pyogenic spondylitis on MRI. Am. J. Roentgenol. 2004; 182: 1405– 10.
  37. Anik Y, Ciftci E, Sarisoy HT al. et MR spectroscopy findings in tuberculous spondylitis; comparison with Modic type-I end-plate changes and metastatic vertebral disease. Eur. J. Radiol. 2009; 71: 324– 32.
  38. Harada Y, Tokuda O, Matsunaga N. Magnetic resonance imaging characteristics of tuberculous spondylitis vs. pyogenic spondylitis. Clin. Imaging 2008; 32: 303– 9.
  39. Hussain SF, Irfan M, Abbasi M al. et Clinical characteristics of 110 military tuberculosis patients from a low HIV prevalence country. Int. J. Tuberc. Lung Dis. 2004; 8: 493– 9.
  40. Sharma SK, Mohan A, Sharma A al. et Miliary tuberculosis: new insights into an old disease. Lancet Infect. Dis. 2005; 5: 415– 30.
  41. Fujita J, Bandoh S, Kubo A al. et HRCT shows variations in appearance in disseminated tuberculosis in adults. Int. J. Tuberc. Lung Dis. 2006; 10: 222– 6.
  42. Pipavath SNJ, Sharma SK, Sinha S al. et High resolution CT (HRCT) in military tuberculosis (MTB) of the lung: correlation with pulmonary function test & gas exchange parameters in north Indian patients. Indian J. Med Res. 2007; 126: 193– 8.
  43. Sawy MS, Jayakrishnan B, Behbehani N al. et Flexible fiberoptic bronchoscopy. Diagnostic yield. Saudi. Med. J. 2004; 25: 1459– 63.
  44. Escobedo-Jaimes L, Cicero-Sabido R, Criales-Cortez JL al. et Evaluation of the polymerase chain reaction in the diagnosis of miliary tuberculosis in bone marrow smear. Int. J. Tuberc. Lung Dis. 2003; 7: 580– 86.
  45. Golden MP, Vikram HR. Extrapulmonary tuberculosis: an overview. Am. Fam. Physician 2005; 72: 1761– 8.
  46. Scarborough M, Thwaites GE. The diagnosis and management of acute bacterial meningitis in resource-poor settings. Lancet Neurol. 2008; 7: 637–48.
  47. Baveja CP, Gumma V, Jain M al. et Newer methods over the conventional diagnostic tests for tuberculous meningitis: do they really help? Trop. Doct. 2009; 39: 18– 20.
  48. Caws M, Dang TM, Torok E al. et Evaluation of the MODS culture technique for the diagnosis of tuberculous meningitis. PLoS ONE 2007; 2: e1173.
  49. Haldar S, Sharma N, Gupta VK al. et Efficient diagnosis of tuberculous meningitis by detection of Mycobacterium tuberculosis DNA in
  50. cerebrospinal fluid filtrates using PCR. J. Med. Microbiol. 2009; 58: 616– 24.
  51. Takahashi T, Tamura M, Asami Y al. et Novel wide-range quantitative nested real-time PCR assay for Mycobacterium tuberculosis DNA: development and methodology. J. Clin. Microbiol. 2008; 46: 1708– 15.
  52. Thomas MM, Hinks TS, Raghuraman S al. et Rapid diagnosis of Mycobacterium tuberculosis meningitis by enumeration of cerebrospinal fluid antigen-specific Tcells. Int. J. Tuberc. Lung Dis. 2008; 12: 651– 7.
  53. Kosters K, Nau R, Bossink A al. et Rapid diagnosis of CNS tuberculosis by a T-Cell interferon-gamma release assay on cerebrospinal fluid mononuclear cells. Infection 2008; 36: 597– 600.
  54. Pai M, Ling DI. Rapid diagnosis of extrapulmonary tuberculosis using nucleic acid amplification tests: what is the evidence? Future Microbiol. 2008; 3: 1– 4.
  55. Restrepo BI, Pino PA, Volcy M al. et Interpretation of mycobacterial antibodies in the cerebrospinal fluid of adults with tuberculous meningitis. Trop. Med. Int. Health 2008; 13: 653– 8.
  56. Senol G, Ecevit C, Ozturk A. Humoral immune response against 38- and 16- kDa mycobacterial antigens in childhood tuberculosis. Pediatr. Pulmonol. 2009; 44: 839– 44.
  57. Murakami S, Takeno M, Oka H al. et Diagnosis of tuberculous meningitis due to detection of ESAT-6-specific gamma interferon production in cerebrospinal fluid enzyme-linked immunospot assay. Clin. Vaccine Immunol. 2008; 15: 897– 9.
  58. Sonmez G, Ozturk E, Sildiroglu HO al. et MRI findings of intracranial tuberculomas. Clin. Imaging 2008; 32:88– 92.
  59. Oztoprak I, Gumus C, Oztoprak B al. et Contrast medium-enhanced MRI findings and changes over time in stage I tuberculous meningitis. Clin. Radiol. 2007; 62: 1206– 15.
  60. Janse van Rensburg P, Andronikou S, Van Toorn R al. et Magnetic resonance imaging of miliary tuberculosis of the central nervous system in children with tuberculous meningitis. Pediatr. Radiol. 2008; 38: 1306– 13.
  61. Pienaar M, Andronikou S, Van Toorn R. MRI to demonstrate diagnostic features and complications of TBM not seen with CT. Childs Nerv. Syst. 2009; 25: 941– 7.
  62. Andronikou S, Van Toorn R, Boerhout E. MR imaging of the posterior hypophysis in children with tuberculous meningitis. Eur. Radiol. 2009; 19: 2249– 54.
  63. Lee J, Pastagia M. Peritoneal tuberculosis. Int. J. Infect. Dis. 2009; 13:117.
  64. Poyrazoglu OK, Timurkaan M, Yalniz M al. et Clinical review of 23 patients with tuberculous peritonitis: presenting features and diagnosis. J. Dig. Dis. 2008; 9: 170– 74.
  65. Que Y, Tao C, Wang Y al. et Nodules in the thickened greater omentum: a good indicator of lesions? J. Ultrasound Med. 2009; 28: 745– 8.
  66. Que Y, Wang X, Liu Y al. et Ultrasoundguided biopsy of greater omentum: an effective method to trace the origin of unclear ascites. Eur. J. Radiol. 2009; 70: 331– 5.
  67. Tongsong T, Sukpan K, Wanapirak C al. et Sonographic features of female pelvic tuberculous peritonitis. J. Ultrasound Med. 2007; 26: 77– 82.
  68. Bedioui H, Ksantini R, Nouira K al. et Role of laparoscopic surgery in the etiologic diagnosis of exsudative ascites: a prospective study of 90 cases.
  69. Gastroenterol. Clin. Biol. 2007; 31: 1146– 9.
  70. Krishnan P, Vayoth SO, Dhar P al. et Laparoscopy in suspected abdominal tuberculosis is useful as an early diagnostic method. ANZ J. Surg. 2008; 78:
  71. – 9.
  72. Meshikhes AW. Pitfalls of diagnostic laparoscopy in abdominal tuberculosis. Surg. Endosc. 2009; do 10.1007/s00464-009-0692-z.
  73. Wang WN, Wallack MK, Barnhart S al. et Tuberculous peritonitis: definitive diagnosis by laparoscopic peritoneal biopsy. Am. Surg. 2008; 74: 1223– 4.
  74. Kim SH, Cho OH, Park SJ al. et Diagnosis of abdominal tuberculosis by T-cellbased assays on peripheral blood and peritoneal fluid mononuclear cells. J.
  75. Infect. 2009; 59: 409– 15.
  76. Ariga H, Kawabe Y, Nagai H al. et Diagnosis of active tuberculous serositis by antigen-specific interferon-gamma response of cavity fluid cells. Clin. Infect. Dis. 2007; 45: 1559– 67.
  77. Riquelme A, Calvo M, Salech F al. et Value of adenosine deaminase (ADA) in ascitic fluid for the diagnosis of tuberculous peritonitis: a meta-analysis.
  78. J. Clin. Gastroenterol. 2006; 40: 705– 10.
  79. Imazio M, Brucato A, Derosa FG al. et Aetiological diagnosis in acute and recurrent pericarditis: when and how. J. Cardiovasc. Med. (Hagerstown) 2009;
  80. : 217– 30.
  81. Mayosi BM, Burgess LJ, Doubell AF. Tuberculous pericarditis. Circulation 2005; 112: 3608– 16.
  82. Reuter H, Burgess LJ, Schneider J al. et The role of histopathology in establishing the diagnosis of tuberculous pericardial effusions in the presence of
  83. HIV. Histopathology 2006; 48: 295– 302.
  84. Zamirian M, Mokhtarian M, Motazedian MH al. et Constrictive pericarditis: detection of mycobacterium tuberculosis in paraffin-embedded pericardial tissues by polymerase chain reaction. Clin. Biochem. 2007; 40: 355–8.
  85. Biglino A, Crivelli P, Concialdi E al. et Clinical usefulness of ELISPOT assay on pericardial fluid in a case of suspected tuberculous pericarditis. Infection 2008; 36: 601– 4.
  86. Jolobe OM. Interferon-gamma may be a better test for tuberculous pericarditis. Am. J. Med. Sci. 2008; 336: 215; author reply 215–6.
  87. Arroyo M, Soberman JE. Adenosine deaminase in the diagnosis of tuberculous pericardial effusion. Am. J. Med. Sci. 2008; 335: 227– 9.
  88. Reuter H, Burgess L, Van Vuuren W al. et Diagnosing tuberculous pericarditis. QJM 2006; 99: 827– 39.
  89. Tuon FF, Silva VI, Almeida GM al. et The usefulness of adenosine deaminase in the diagnosis of tuberculous pericarditis. Rev. Inst. Med. Trop. Sao Paulo 2007; 49: 165– 70.
  90. George S, Salama AL, Uthaman B al. et Echocardiography in differentiating tuberculous from chronic idiopathic pericardial effusion. Heart 2004; 90:
  91. – 9.
  92. Kim SH, Song JM, Jung IH al. et Initial echocardiographic characteristics of pericardial effusion determine the pericardial complications. Int. J. Cardiol.
  93. ; 136: 151– 5.
  94. Zagol B, Minderman D, Munir A al. et Effusive constrictive pericarditis: 2D, 3D echocardiography and MRI imaging. Echocardiography 2007; 24: 1110– 14.
  95. Ha JW, Ko YG, Choi BW. Images in cardiology. Delayed hyperenhancement of the pericardium by magnetic resonance imaging as a marker of pericardial inflammation in a patient with tuberculous effusive constrictive pericarditis. Heart 2006; 92: 494.
  96. Habashy AG, Mittal A, Ravichandran N al. et The electrocardiogram in large pericardial effusion: the forgotten “P” wave and the influence of tamponade, size, etiology, and pericardial thickness on QRS voltage. Angiology 2004; 55: 303– 7.
  97. Cek M, Lenk S, Naber KG al. et EAU guidelines for the management of genitourinary tuberculosis. Eur. Urol. 2005; 48: 353– 62.
  98. Hsieh HC, Lu PL, Chen YH al. et Genitourinary tuberculosis in a medical center in southern Taiwan: an elevenyear experience. J. Microbiol. Immunol. Infect. 2006; 39: 408– 13.
  99. Nerli RB, Kamat GV, Alur SB al. et Genitourinary tuberculosis in pediatric urological practice. J. Pediatr. Urol. 2008; 4: 299– 303.
  100. Wise GJ. Urinary tuberculosis: modern issues. Curr. Urol. Rep. 2009; 10: 313–18.
  101. Wise GJ, Marella VK. Genitourinary manifestations of tuberculosis. Urol. Clin. North Am. 2003; 30: 111– 21.
  102. Wise GJ, Shteynshlyuger A. An update on lower urinary tract tuberculosis. Curr. Urol. Rep. 2008; 9: 305– 13.
  103. Bhanu NV, Singh UB, Chakraborty M al. et Improved diagnostic value of PCR in the diagnosis of female genital tuberculosis leading to infertility. J. Med. Microbiol. 2005; 54: 927– 31
  104. Rui X, Li XD, Cai S al. et Ultrasonographic diagnosis and typing of renal tuberculosis. Int. J. Urol. 2008; 15: 135– 9.
  105. Burrill J, Williams CJ, Bain G al. et Tuberculosis: a radiologic review. Radiographics 2007; 27: 1255– 73.
  106. Chavhan GB, Hira P, Rathod K al. et Female genital tuberculosis: hysterosalpingographic appearances. Br. J. Radiol. 2004; 77: 164– 9.
  107. Craig WD, Wagner BJ, Travis MD. Pyelonephritis: radiologic-pathologic review. Radiographics 2008; 28: 255–77; quiz 327–8.
  108. Jung YY, Kim JK, Cho KS. Genitourinary tuberculosis: comprehensive crosssectional imaging. AJR Am. J. Roentgenol. 2005; 184: 143– 50.
  109. Matos MJ, Bacelar MT, Pinto P al. et Genitourinary tuberculosis. Eur. J. Radiol. 2005; 55: 181– 7.
  110. Muttarak M, ChiangMai WN, Lojanapiwat B. Tuberculosis of the genitourinary tract: imaging features with pathological correlation. Singapore
  111. Med. J. 2005; 46: 568– 74; quiz 75.
  112. Vanhoenacker FM, De Backer AI, Op de BB al. et Imaging of gastrointestinal and abdominal tuberculosis. Eur. Radiol. 2004; 14 (Suppl. 3): E103– 15.
  113. Garbyal RS, Gupta P, Kumar S. Diagnosis of isolated tuberculous orchitis by fine-needle aspiration cytology. Diagn. Cytopathol. 2006; 34: 698– 700.
  114. Larsen CP, Moreira RK, Hennigar RA al. et Kidney biopsy findings in a patient with fever, bilateral pulmonary infiltrates, and acute renal failure. Am. J.
  115. Kidney Dis. 2008; 51: 524– 9.
  116. Rivasi F, Curatola C, Garagnani L al. et Detection of Mycobacterium tuberculosis DNA by polymerase chain reaction from paraffin samples of
  117. chronic granulomatous endometritis. Histopathology 2007; 51: 574– 8.
  118. Starke JR. Pediatric tuberculosis: time for a new approach. Tuberculosis 2003; 83: 208– 12.